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Dynamical systems with fractal geometry can be constructed in a variety of 
ways: We illustrate this variety with examples based on the Cantor set, the 
Sierpinski gasket, and on lattices of these fractal-based structures. Depending on 
the physical parameters, the models can exhibit both discrete and continuous 
spectra. 
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1. I N T R O D U C T I O N  

Although a fractal is often considered to be only a geometric object, it can 
be endowed with properties which turn it into a model physical system. (~) 
In particular, by placing masses and springs on a fractal, one can study 
the vibrations of systems with fractal geometry. There are many ways 
to decorate a fractal with masses and springs, and different choices 
correspond to different physics. For  example, studies of fractal arrays in 
which every mass and every spring is the same have been used to model a 
variety of physical systems, including percolating networks and aerogels. <2) 
However, in other real systems (like trees or snowflakes), the finer portions 
of the fractal-like structure will have smaller masses, effective spring 
constants will .vary with the scale, and the elastic couplings may be long 
ranged. As a first at tempt to see the effects of non-uniform mass and 
spring-constant distributions, we consider two specially simple examples 
with varying masses and spring constants. In these examples, the masses 
become increasingly small as one looks at the fractal-based models on ever 
finer scales. The elastic couplings also scale with size, and (in the second 
example) the coupling are long ranged. In order to clearly demonstrate the 
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types of vibrations which result from variable masses, we have chosen 
solvability and simplicity over realism. Thus the examples presented here 
are only fanciful models of trees and snowflakes. 

Our first model is one-dimensional and is related to the Cantor set. 
The second is two-dimensional and is roughly related to the Sierpinski 
gasket. These models are examples of a much broader class of systems 
which are neither periodic nor random. Many of the solved members 
of this class are one-dimensional. For example, models related to the 
Fibonacci sequence, introduced by Kohmoto et aL, (3) and by Ostlund et 
aL ~4) have attracted considerable interest and applications. ~5"6' 7,8.9. 10) Such 
systems can have singular continuous spectra. ~ )  Another non-periodic but 
ordered one-dimensional model was introduced by Keirstead et al., ~2) and 
a model related to the Koch curve was described by Kappertz et al. ~13) 

Also, physical experiments on the vibrations of a real system with Cantor- 
set geometry and an underlying mass hierarchy have been reported 
recently. ~4) Our first example has some similarities to this physical system, 
but there are also significant differences. 

In two (or more) dimensions, several previous vibration studies have 
been based on the Sierpinski gasket. Specially important results by Ram- 
mal (~5) and Domany et al. t16) described the normal modes of a Sierpinski 
gasket with identical masses at each vertex and identical springs connecting 
nearest-neighbor masses. They showed that this system has a complete set 
of "super-localized" normal modes. They also showed that each normal 
mode frequency is infinitely degenerate, and the spectrum (normal mode 
frequencies plus limit-point frequencies) is a Julia set. Related numerical 
work t~7'~8) and alternative results t~9) have also been reported for this 
model. Another vibration model related to the Sierpinski gasket, which 
incorporated vector displacements, was introduced by Bergman et al. ~2~ 

There are some results for other fractal-based models t2~'22) specially the 
Vicsek fractal. (23"24) Our two-dimensional example is quite different from 
the Sierpinski gasket examples cited above because our model has an 
infinite number of springs connected to each site. These multiple connec- 
tions have some relation to a special Potts model on a Sierpinski gasket 
structure described by de Menezes et aL. ~25) Because our Sierpinski gasket 
model has springs which extend across the entire gasket, it is no surprise 
that the normal modes we obtained are always different from the "super- 
localized" normal modes of the lattice described by Domany et al. and 
Rammal. 

Our one-dimensional and two-dimensional examples are both con- 
structed so the self-similarity of the underlying fractal is reflected in the 
vibrations. When either example is viewed on a smaller scale, its dynamics 
are nearly the same---except the characteristic frequency is changed by a 
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frequency-scaling parameter, r/. Important properties of both examples are 
determined by r/. The simplicity of the models and the self-similarity of the 
underlying fractal structure allow us to derive recursion relations which 
relate the systems' response functions at a frequency m to the response 
functions at the scaled frequency r/~o. When r/> 1 and the total mass is 
finite, these recursion relations have solutions which imply very simple 
vibration spectra: the normal mode frequencies form a discrete, unbounded, 
non-degenerate set with no accumulation points. Numerical results which 
illustrate this case are presented for the one-dimensional example based on 
the Cantor set. 

Our Cantor set example does not make physical sense when the 
characteristic frequencies are scale-independent (r/= 1). However, our two- 
dimensional example related to the Sierpinski gasket can be constructed 
with r/= 1. When r/= 1 the recursion relations become simple algebraic 
equations, and they describe a continuous vibration spectrum which is 
totally different from the discrete spectrum obtained when r/> 1 in either 
model. 

2. CANTOR SET MODEL 

We change the Cantor set into a vibration model by placing a spring 
in each of the open intervals which complement the Cantor set. A mass is 
placed at both ends of each spring and at the ends of the Cantor set. The 
second step in the construction of this model is shown in Fig. l a. The 
spring in each removed interval of length (1/3)" has a spring constant 
k F  ~-~  with F >  1. A mass m is at each end of the Cantor set, and the 
interior masses are m),", where 7 < 1 and n is the exponent characterizing 
the spring connected to the mass. Results presented in Figs. 2a, 3a are for 
F = 3 and ), = 1/3. 

Characteristics of this decorated Cantor set are revealed by its linear 
response to external forces. If oscillatory forces with frequency a~ and 
amplitudes FL and FR are applied to the left and fight ends, the displace- 
ment amplitudes at the two ends, XL and XR, are related to the forces by 
an inverse linear-response matrix; 

F , = \ B ( o) ) A ( o~ ) - mco 2 ,] \ X , ,] " (11 

The forces needed to move only the end m a s s e s  (-m(.o2,j(z, and 
- m c o 2 X R )  have been separated out, so the "response functions" A(co) and 
B(co) characterize the forces needed to move the internal coordinates of 
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Fig. 1. (a) A system of masses and springs related to the geometry of the Cantor set. Further 
iterations insert additional springs into the intervals enclosed by the "lens" shapes. (b): A 
diagrammatic representation of the iteration used to construct the decorated Cantor set. 
(c): A diagrammatic representation of the iteration used to construct the fractal model related 
to the Sierpinski gasket. 

the Cantor  set. Normal  modes of this system (with fixed end-points) 
correspond to poles in the response functions. 

The springs and masses placed on the Cantor  set extend its geometric 
self-similarity to the dynamic self-similarity which is illustrated in Fig. lb. 
The "Cantor  subset" composed of the left-hand third of the decorated 
Cantor set is identical to the original model, except each spring constant is 
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increased by F and each mass (except the left end-point mass) is decreased 
by y. The linear response of the Cantor subset is similarly characterized. 
The force and displacement amplitudes on the left end are again denoted 
FL and XL, and the force and displacement amplitudes at the other end are 
denoted fR and x R. Then 

(a(co) -- mco 2 b(co) '~{Xz, 
( f ~ )  = \ b ( c o )  a(co) -ymco2 , ] \ x , ) "  (2) 

As before, the end-point mass contributions have been written separately. 
This means the response functions characterizing the Cantor set and the 
Cantor subset are exactly related by a scaling of the frequency and a multi- 
plicative factor. Characteristic frequencies are the square roots of a spring- 
constant-to-mass ratio, so frequencies in the Cantor subset are scaled by 

= . ( 3 )  

Also the ratio of forces to displacements is proportional to a spring 
constant. Thus scaling means 

a(r/co) =/"A(co); b(r/co) = FB(co). (4) 

The reflection symmetry of the Cantor set and the scaling relations yield 
recursion relations for the response functions. First consider the reflection- 
symmetric "translation-like" motion which corresponds to XL = XR, and 
FL =FR. Symmetry means the translation-like modes of the Cantor set 
leave the center spring undisturbed, so fR =0. Using this condition and 
equating the ratio Fz./Xz_. obtained from Eq. (1) and from Eq. (2) gives 

A(co) + B(co)=a(co) -  
a( co ) -- 7mco z" 

(5) 

Replacing co with r/co, and using the scaling relations of Eq. (4) gives the 
first of two recursion relations for the response functions; 

( A(r/co) + B(r/co)= F A(co) -A(co) -mco2J"  (6) 

The second recursion relation is obtained by considering the "compression- 
like" motion which corresponds to XL = - X ' R  and FL =--FR.  For this 
case, the center spring is symmetrically compressed, so fR =--2kxR. Again 
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equating the ratio FL/Xt. as given by the two response matrices, and using 
the scaling relations gives 

(B(~o))' ) 
A(rFo) - B(rFo) = F A(cO) - A ( o o )  + 2 k / F _  mco z �9 (7) 

The recursion relations of Eqs. (6), (7) are a central result from which a 
number of physical conclusion can be obtained. The linear response func- 
tions illustrated in Fig. 2a, the power-law of Eq. (9), and other observation 
about the distribution of the normal modes all follow from these equations. 
However, these conclusion are valid only if y < 1/2 and F >  2. As we show 
below, these restrictions on the model parameters are needed to insure that 
the response functions are relatively smooth and well-defined. 

When 7 < 1/2 the total mass of the model is finite. (Summing the 
appropriate geometric series gives this total mass as M = m + m/( 1 -  27).) 
Also, when F > 2  the end-to-end spring constant is non-zero. (The 
geometric sum of inverse spring constants gives K=k(  1 -  2//').) For these 
restricted values for F and 7, COo = ~/K/M is a lower bound for the normal 
mode frequencies. (Placing all the masses at the end of all the springs can 
only lower a normal-mode frequency.) For frequencies smaller than COo, the 
response functions will be smooth and bounded. Thus substituting an 
expansion of A(co) and B(co) (in powers of co 2) into the recursion relations 
yields the low frequency behavior of the system. In particular, for to = 0 the 
recursion relations become algebraic conditions on the static response 
functions. Solving these equations (with the restriction that A(0) > 0 
for mechanical stability) gives A ( 0 ) = - B ( 0 ) = K .  As one would expect, 
these values characterize the static response of a spring with the end-to-end 
spring constant, K. To first order in co 2, A(co)~ K +  0unto 2 and B(co)--- - K  
+flmco 2. Substituting these into (Eq. (6)) gives A(co)+B(co)~-(M/2-m)co 2. 
This is the result one expects; when F,~ = FR, each force accelerates half the 
total mass, M, but the end-point mass accelerations are listed separately in 
the response matrix. 

Starting with the low-frequency power series, multiple iterations of the 
recursion relations yield the response functions at higher frequencies. In 
practice, one does this by picking a "seed frequency" ~2 ~COo which is so 
small that A(~2) and B(~2) are accurately approximated by only the con- 
stant and g22 terms in their expansions. Repeated application of the recur- 
sion relations gives the response functions at frequencies coj = g2r/J, where j 
is the number of iterations. For a given fl, this gives results only at widely 
separated frequencies. In order to sample the entire frequency range, the 
iterations are repeated for a large set of seed frequencies between ~2 and r/~2. 
Typical results for the case F =  1/7 = 3 are shown in Fig. 2a. We have 



Vibrations of Simple FractaI-Based Models 459 

t~ 
, q0 .5  

m 
<I: 0 

..I,,.,I 
t,,} 
I , , . ,  

-0.5 

a 

5 

O3 

2.5 

1.5 

r 

r  

-0.5 ! ! 

-1.5 

b) 
Re(A) 

5xlm(A) 

1 2 

5xlm(B ) 
Re(B) ~ ' ~ ~ ~ ~ ~ _ _  

0) 

Fig. 2. (a): The frequency dependence of tan- l (A(to))  and tan-i(B(to))  which characterize 
the linear response of the Cantor set vibration model for F - 1 / 7 = 3  (b): The real and 
imaginary parts of the response functions A(to) and B(to) for the Sierpinski gasket vibration 
model for F = 7 "- 1/10. All curves are based on units where k = m -  1. 
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presented tan-~(A(o~)) and tan-~(B(og)) in this figure, rather than the 
response functions themselves, only because the inverse tangent is a 
convenient way to represent functions with singularities. 

The numerical results are relatively insensitive to the value of the 
response functions at the seed frequency. For example, with I2 = coo/100, no 
difference can be detected between the response functions obtained from 
A(O) and B(O) which are accurate to order t22, and response functions 
obtained using the less accurate zero-order approximation; A(s 
- B ( ~ )  -- K. 

The singularities in the response functions represent normal modes of 
this Cantor-set model (with fixed end-points). The recursion relations tell 
us that a)* is a normal-mode frequency, either because A(co*/rl)- 
m(fo*/q)2=0 (SO Eq. (6) is divergent), or because A(co*/rl)+2k/F- 
m(co*/q)2 = 0 (so Eq. (7) is divergent). Also, using continuity, the recursion 
relations can be applied even at to* because singular terms in the 
numerator and denominator cancel~yielding a result which can be 
expressed in terms of the response functions at the lower frequency, co*/r/. 
Thus a normal mode at to* means neither co*/r/nor r/to* are normal mode 
frequencies. In practice, numerical iterations of the recursion relations will 
occasionally land at frequencies which are very close to a normal mode 
frequency. To avoid the numerical problems which can occur when this 
happens, one can change to a second-order iteration of the reeursion rela- 
tions whenever the denominator in Eq. (6) or Eq. (7) becomes dangerously 
small. 

Since B(co) is non-zero, forces are transmitted across the Cantor set. 
However, at high frequencies B(co) is extremely small except when the 
frequency approaches one of the normal mode frequencies. 

The average distribution of normal mode frequencies can be obtained 
from the recursion relations. Let N(co) be the total number of normal 
modes with frequency less than co. (N(co) is the integrated density of states.) 
The number of normal modes in the frequency range th < co < (tb + z/co) is 
thus N(ch+ dog)-N(ch), and the number of modes in the scaled frequency 
interval r/o5 < co < q(tb +/Io9) is N(q(ch + rico)) - N(qch). As will be shown 
below, the recursion relations tell us that the number of normal modes in 
the scaled interval is twice the number of normal modes in the original 
interval. Thus (changing notation so ch is replaced by to) 

N(  co + zlo~ ) - N(  ~o ) 
~ 2  (8) 

Writing the integrated density of states as 

N(  co ) ~- o~" f ( co ) (9) 
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and picking Aco so that co + Aco = r/to gives a recursion relation for f(r/"oo) 
at different n. These recursion relations simplify and the factor of 2 is 
eliminated if we take 

ln(2) (10) 
P -  ln(r/)" 

Then letting G , =  f(r/"+ 1(_/))__f(rln(l)), Eq. (8) is equivalent to Gn+ 1 -'-G,,/2. 
The resulting vanishing of the G, for large n means that for large frequency, 
the function f(co) is neither growing nor shrinking, but it is periodic in the 
log of its argument (f(qco)~f(co)) .  This means the integrated density of 
states is characterized by a power law, but it is modulated by a function 
which is periodic in log(co) and does not approach a constant value. The 
power-law describing the density of states is valid only in the sense that 
[ ln(N(co))-p  ln(co)l is bounded, but it does not vanish as co~  oo. This 
follows by taking the log of N(co)~ coPf(co). The significant excursions of 
N(co) away from its power-law approximation represent a clustering of 
normal mode frequencies. 

To show that the number of normal modes really is doubled when the 
frequency interval is scaled by r/, consider the n th and (n + 1)th normal 
modes with frequencies co, and co,+ 1. As is shown in Fig. 2a, A(co)-mco 2 
decreases continuously from + oo to - o o  as the frequency increases from 
co, to co,+~. This means there is one frequency in this interval where 
the first recursion relation (Eq. (6)) is singular, and there is a different 
frequency where the second recursion relation (Eq. (7)) is singular. These 
singularities signify two normal modes in the scaled frequency range 
r/co, <co <r/co,+ 1. Of course one should not have to rely on Fig. 2a to 
show that A ( ~ ) - m c o  2 is a decreasing function of frequency. A formal 
demonstration follows from the recursion relations. At very small frequen- 
cies we can use the power series expansions to show that both F(co)= 
A(co) - mco z + B(co) and G(co) = A(co) - mco 2 -  B(co) have negative 
derivatives. Then taking a derivative of the recursion relations shows that 
the derivatives of F(r/"co) and G(r/"co) remain negative when the frequency 
is scaled by any power of r/. 

The response functions A(co), B(co) which characterize the Cantor set 
model can also be used to describe the vibrations of a one-dimensional 
lattice of these Cantor set models. In the Cantor-set lattice, a mass m with 
displacement X, is both the left end of Cantor set number n + 1 and the 
right end of Cantor set number n. Phonon propagation on this lattice 
corresponds to no applied force at site n, so using the response matrix, 

0 = (2A(co)-moo z) X,, + B(co)(X,,+l + X,,_ 1). (11) 
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Seeking plane-wave solutions to Eq. (11) of the form X,, = Xo exp(izcqn) 
determines the phonon's wave vector q in terms of its frequency o9. The 
resulting four lowest frequency branches of the phonon dispersion rela- 
tions, again for the case F =  1/7= 3, are shown in Fig. 3a. The sound 
velocity associated with the acoustic branch is the same as the sound 
velocity of a lattice of "atoms" in which the atomic mass is the total mass 
of one Cantor set, M, and the effective spring constant is given in terms of 
the static compressibility of the Cantor set, K. Increasingly high frequency 
branches of the phonon spectrum become increasingly narrow, and they 
converge to the normal-mode frequencies of a single Cantor set. This 
reflects the near-localization of the higher frequency normal modes of this 
model. 

Finally, we note again that our characterization of the spectrum 
as a set of isolated points applies only when F >  2 and y < 1/2, which 
corresponds to the case of finite total mass (M < oo) and non-zero overall 
compressibility (K>0) .  The same model is also well-defined when 1 < 
F < 2  and 1/2 < y <  1. However, since the vibration spectrum for this 
second region of parameter space extends down to zero frequency, we can- 
not assume that the response functions are "smooth" near zero frequency, 
and this means a simple numerical application of the recursion relations is 
not possible. 

3. SIERPINSKI GASKET MODEL 

Different physical results can be obtained when our analysis is applied 
to more complex fractal-like systems, as is illustrated here by a model 
which is roughly related to the Sierpinski gasket. 

The model is constructed by an infinite sequence of modifications of a 
triangle. Masses m are placed on the vertices of an equilateral triangle. 
They are coupled by three identical springs with spring constant k. For the 
second step, three smaller masses ym are placed at the center of each leg 
of the triangle, and these are connected to each other and to the two near 
vertices of the original triangle by nine springs with a weaker spring 
constant, Fk. The iteration procedure for this construction is illustrated in 
Fig. lc. Each vertex of the gasket-like structure described here is connected 
to an infinite number of springs. In order for the model to make physical 
sense, the spring constants must become increasingly weak with each 
iteration, which means F < 1. 

Like the Cantor set model of Section 2, this model is characterized by 

a frequency scaling parameter, r/. Unlike the Cantor set model, r/= x/F/7 
need not be greater than unity. As will be shown below, r/= 1 is a specially 
interesting case because the vibration spectrum becomes continuous. Note 
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that the scale-invariance of the characteristic frequencies means the spring 
constants and masses scale by the same amount, so their ratio does not 
change. The r/= 1 case of our model is quite different from the Sierpinski 
gasket model described by Domany et  al. and Rammal. 

Vibrations of this Sierpinski gasket example are derived following 
arguments similar to those used for the Cantor set. Forces applied to the 
comers of the gasket are related to the vibration amplitudes at these 
comers by two response functions. Viewing the gasket on an expanded 
scale means the response can be written in terms of the response functions 
for the three sub-triangles. 

The forces on the Comers are denoted F, G, H, and the corresponding 
displacements are X, Y, Z. Symmetry means the inverse linear response 
matrix is again characterized by two linear response functions; 

"(~ 
= B(co) A(co) - moo 2 

s(co) B(co) A ( og ) --  mo~2,/ \ Z ,/ 

(12) 

The forces and displacements at the midpoints on each edge opposite 
X, Y, Z. are denoted P, Q, R, and U, V, IV. The inverse linear response 
matrix for all six coordinates and the corresponding forces is 

/F 

G 

H 

P 

0el - k  - k  0 b b X 

- k  "1 - k  b 0 b Y 

- k  - k  0el b b 0 z 
o 

0 b b 0c2 b b U 

b 0 b b 0c2 b / 
b b b b b 0~2/ 

(13) 

Here 

a l  = a ( c o )  - m o o  2 + 2 k ,  (14) 

and 

o~2 = 2a(co) - y m m  2. (15) 

The functions a(co),b(co) are the scaled versions of A(c0),B(co), and 
Eqs. (3), (4) apply without alteration. 

The recursion relations for the response functions are obtained by 
comparing the 6 x 6 matrix of Eq. (13) with the 3 x 3 matrix of Eq. (12). 
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Setting P = Q = R = 0 in Eq. (12) means the forces are applied only at the 
comers of the triangle. When P = Q = R = 0, the displacements at the mid- 
points of the sides (U, V, IV) can be written in terms of the displacements 
at the corners (X, Y, Z). Then the forces at the comers are determined by 
the displacements at the comers, and the relationship between (F, G, H) 
and (X, Y, Z) derived from Eq. (13) must be the same as that given by 
Eq. (12). 

Symmetric coordinates simplify the algebra. For F, G, and H, let 

1 
F o = - ~  (F+ G + H), (16a) 

1 (F+zG+z*H), (16b) F+ =x//~ 

F_ = F * ,  (16c) 

where z = - 1/2 + i x/~/2. Analogous definitions apply for X, Y, Z 
Xo, X+,X_,P,  Q,R~Po,  P+,P_, and U, V, W ~  Uo, U+, U_. Using 
these coordinates and forces, Eq. (12) becomes 

0 

A( co) - moo2 - B( co) 

0 

0 

0 X+ 

A ( m ) - m o o 2 -  B(co) X _  

(12') 

The four 3 x 3 blocks of Eq. (13) are similarly diagonalized using these 
coordinates. Thus the 6 x 6 matrix reduces to three 2 x 2 blocks. Two of 
these blocks are: 

and 

(a(~)  - m~ 2 2 ,o) 
a(co) - ym~ 2 + 2b(o~) Uo " 

(13a) 

(F+].:( a(c~ 
P+ - b(co) 

-b(co) 
(13b) 

The " + "  and " - "  systems have the same matrix, so the third 2 x 2 
block gives no additional information. To relate the 2 x 2  block of 
Eq. (13a) to the first matrix diagonal matrix element of the symmetrized 
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3 x3 matrix (Eq. 12')), we set P o = 0  (forces are only applied at the 
comers). This gives 

-2b(co) 
Uo = 2 a ( c o ) -  y m c o :  + 2b(co) Xo. (17) 

Using this expression for Uo in Eq. (13a) gives a linear relation between/7o 
and Xo. Comparing this result with Eq. (12'), and using the scaling 
relations between a(co), b(co) and A(co), B(co) gives one of two recursion 
relations; 

2(B(co)) 2 ) 
A(r/co) + 2B(r/co) = F A(co)-A(co) g~B-~i "z'mcoz/2 " (18) 

Essentially the same algebra applies for Eq. (13b) and the second diagonal 
matrix element of Eq. (12'). Setting P+ = 0 in Eq. (12b) gives 

b(co) 
U+ = 2a(co) - ymco2- b(co) X+, (19) 

which yields the second recursion relation for the response functions; 

(~(o~))~ ) 
A ( rl co ) - B ( rl co ) - 3 k = F A ( co ) - 2 A ( co ) _ B ( co ) _ m co 2 . (20) 

As with the Cantor set, physical results can be obtained from the recursion 
relations (Eqs. (18), (20)), provided F and y are chosen so that the response 
functions are smooth and well-defined at low frequencies. The results for 
r/> 1 show a sequence of normal-mode poles in the response functions which 
are qualitatively similar to the normal-mode structure of the Cantor-set 
model described earlier. However, the discrete normal mode spectrum 
changes to a continuous spectrum when the frequency-scaling parameter r/ 
is unity. Then Eqs. (18), (20) become simple second-order algebraic equa- 
tions for the response functions A (co), B(co). The solutions to these equations 
show none of the singular structure associated with isolated normal modes. 
Instead, the response functions are smooth (but complex-valued) functions 
of the frequency, indicating a continuous vibration spectrum. The real and 
imaginary parts of both response functions for F =  y = 1/10 are shown in 
Fig. 2b. The two frequency ranges where the density of states is non-zero 
correspond to damped translation-like and compression-like vibrations. 

It is indeed curious that when our model exhibits a scale invariance 
which is superficially similar to the characteristics of the Sierpinski gasket 
model studied by Rammal and Domany e t  al. (R-D), our conclusions 
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about the nature of the spectrum are completely different. Our continuous 
spectrum has absolutely no similarity to the highly degenerate "super- 
localized" normal mode spectrum of the R-D model. However, it should be 
remembered that our scale invariance results from canceling effects. Both 
springs and masses get smaller as one examines the system on a finer scale, 
and only a characteristic frequency co = kx/ /~  is unchanged. In contrast, 
every site and every spring in the R-D model is identical, and there are no 
long-ranged forces. Modes are "super-localized" in the R-D model because 
amplitudes cancel at sites surrounding a localized vibration, and this 
cancellation is much more difficult to achieve if there are long-ranged inter- 
actions and sites with differing masses. 

As with the Cantor set, phonons can propagate on a triangular lattice 
of these Sierpinski gaskets. The phonon dispersion relations are again 
obtained from the response functions. For the case of phonon wave vectors 

/ 

perpendicular to the base of the triangles, the "no-force" condition gives 

0 = 3A(co)-mco 2 + 2B(co)( 1 + 2 cos(zrq)). (21) 

Real values for the wave vector q are only obtained when the response 
functions are real. The gaps in the phonon dispersion curves of Fig. 3b 
(for 1-'=y= 1/10) correspond to frequency ranges where the individual 
Sierpinski gaskets absorb energy. 

In conclusion, we have combined a hierarchy of physical attributes 
with the self-similarity of fractal geometry to produce soluble models of 
fractal vibrations. Our models exhibit different universality classes of 
spectra which result from variations of a material parameter, such as r/. 
Various applications and extensions of this work are possible. The results 
apply as well to electric-circuit analogies of the mechanical systems. The 
linear response technique can be applied to fractal models in higher dimen- 
sions and to vector-valued vibrations amplitudes. There are also unresolved 
questions. For example, for some physically reasonable choices of the 
parameters F and y, we cannot deduce the nature of the vibrations. Also, 
for the Sierpinski gasket, we believe the transition from the discrete to the 
continuous spectrum occurs at r/= 1. Setting r/= 1 + e yields an expansion 
in e with singular properties. However, the simplicity of the recursions rela- 
tions suggest that these equations could be a useful model for the study of 
the transition between different spectral types. 
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